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ABSTRACT
Self-powered wireless mesh networks have gained popularity as a
cheap alternative for providing Internet access in many rural areas
of the developed and, especially, the developing world. The quality
of service that these networks deliver is often bounded by such rudi-
mentary issues as the unavailability of electrical energy. Depen-
dence on renewable energy sources and variable power consump-
tion make it difficult to predict the available energy and provide
guarantees on communication performance. To facilitate energy
trend estimation we develop an energy flow model that accounts for
communication and energy harvesting equipment hardware specifi-
cations; high resolution, time-varying weather information; and the
complex interaction among them. To show the model’s practical
benefits, we introduce an energy-aware routing protocol, Lifetime
Pattern-based Routing (LPR), specifically tailored for self-powered
wireless networks. LPR’s routing decisions are based on energy
level estimations provided by the energy flow model. Our protocol
balances the available energy budget across all nodes; as a result,
power failures are distributed among all participating parties. Us-
ing traces captured from a live network, we use simulation to show
that LPR outperforms existing work in rural-area wireless network
routing.

Categories and Subject Descriptors
C.2 [Computer-communication Networks]; C.4 [Performance
of Systems]

General Terms
Algorithms, Design, Measurement, Performance, Reliability

Keywords
Energy efficiency, Rural wireless networks, Energy-flow model,
Power-aware routing

1. INTRODUCTION
The map of the information world is highly polarized: only 5%

of the African population uses the Internet (compared to 70% in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSDR ’09 Big Sky, Montana USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

North America) [17] and there are more telephones in the city of
Montreal, Canada alone than in the whole country of Bangladesh
[9]. These examples reveal only the tip of the huge problem of
digital divide that can be observed on different levels in our society.

Most rural areas are out of reach of the state-of-the-art network-
ing technologies as low population density and economic factors
prevent their deployment. Wireless networks based on the IEEE
802.11a/b/g protocol have emerged as a viable alternative due to
their low cost, license-free operation and ease of deployment. Un-
like more traditional WiFi network settings, rural wireless deploy-
ments often have to face the lack of reliable grid power infrastruc-
ture [15], especially for wireless relay nodes that connect distant
user clusters. In those situations, network devices are self-powered,
i.e., powered by energy harvested from renewable sources such as
wind and solar.

Unfortunately, renewable energy sources are inherently intermit-
tent; therefore networks relying on them naturally exhibit inter-
mittent connectivity, making them yet another example of a delay
tolerant network (DTN). One way of coping with the problem of
time-varying renewable energy supply is to provide a greater safety
margin by installing excess energy harvesting hardware. However,
such over-engineering significantly increases deployment costs with
a powering system costing several orders of magnitude more than
the communication equipment it powers. A better way of tackling
this problem is to make judicious use of the limited and variable en-
ergy supplies via power-aware networking mechanisms, including
routing.

Understanding the flow of energy is essential for enabling such
intelligent power-aware mechanisms. But to the best of our knowl-
edge, existing work does not model this aspect. Moreover, existing
routing protocols suitable for rural wireless networks [2] do not
take time-varying node energy budgets into account when making
routing decisions.

In this paper, we examine the behavior of energy flow within
self-powered routers in rural wireless networks and show that aware-
ness of this behavior can aid in improved routing. Specifically, this
work makes the following contributions:

1. We define an energy-flow model that continuously tracks the
available energy budget within each self-powered router node
(Section 3). It factors in time-varying local weather condi-
tions (solar irradiation, wind speed), node energy consump-
tion and complex interactions among multiple energy sources
and the energy storage. This model can be used to predict fu-
ture up and down times of a node if weather conditions can
be forecast at the node.

2. With confidence in our model, we develop a power-aware
routing protocol termed LPR (Section 4) that utilizes the model



to select paths that lead to more even consumption of node
energy reserves and fewer network partitions, thus improv-
ing message delivery. Note that power-aware routing in the
presence of self-powered routers is different from the tra-
ditional power-aware routing (e.g., [14]) since batteries are
replenished in the former case. One could view the self-
powered router context as a scenario where nodes and as-
sociated links fail temporarily while batteries powering the
nodes are recharged by renewable energy sources. To evalu-
ate the effectiveness of LPR (Section 5), we use fine-grained
weather monitoring traces collected for the Tegola network [1].

2. NETWORK MODEL
WiFi-based rural area networks have been deployed worldwide

from South Africa [6] and India [15] to UK [1]. Although rela-
tively diverse, all the deployments share several common features.
Each of these deployments is essentially a network of stationary
mesh routers interconnected by long-distance point-to-point links
(∼10km). A mesh router in these deployments also serves as an
access point for a group of users in a location (e.g., village). Node
degree is typically small for the mesh network topology. There
is usually one mesh router that is connected to the wider Internet,
thereby acting as an Internet gateway for the rest of the network.
The means of energy supply for mesh routers is diverse with some
nodes powered by grid power, others are self-powered using re-
newable energy sources. A self-powered mesh router consists of
communication equipment (a routing board, wireless NICs, anten-
nas, local access AP) and energy harvesting equipment (solar panel
and/or wind turbine, rechargeable battery, charging regulator); the
former is the energy consumer while the latter is the energy source.

Tegola [1] is a rural wireless mesh network deployed in the north-
west of Scotland to serve as a testbed for research into technologies
for low-cost, robust broadband wireless access in rural and remote
areas. The area where the testbed is deployed is quite remote and
known for its harsh weather and mountainous terrain, making it
a challenging environment to deploy and operate a network. The
Tegola network model closely matches the above generic model.
Currently, it consists of five backhaul mesh router nodes (two of
which are self-powered) and 17 rooftop nodes, connecting 35-40
households spread across six communities. One of the self-powered
routers has been instrumented with a data logger and sensors for
power monitoring. Specifically, local wind speed and solar irradia-
tion is measured every minute using an anemometer and a solar ra-
diation sensor attached to the data logger. Additionally, three pairs
of voltage and current probes are used to individually measure the
power output of the solar panel and wind turbine as well as the over-
all power consumption of the communication equipment. While
the energy flow modeling and power aware routing presented in
this work are more generally applicable, we will refer to the Tegola
network given that we have immediate access to it.

3. ENERGY FLOW MODEL
Weather conditions are highly variable, so any model that relies

on annual (or any other long term average) values is inherently in-
accurate. For example, the wind energy harvested is proportional to
the cube of the wind speed. Therefore two sites that have the same
long-term average wind speed may differ significantly in terms of
the actual wind energy harvested. Therefore, we model the sys-
tem’s behavior on a time scale as small as is realistic. The main
restriction is the granularity of the weather sensor data.

Our approach to modeling energy flow in a self-powered router
node closely follows the physical components of the system and

their types — battery type, solar panel and wind turbine speci-
fications, available power consumption levels. In a self-powered
system, the energy harvested by wind turbines and solar panels
is converted to electrical energy and stored in a battery. Due to
their robustness and low cost, lead-acid carbon-fiber batteries are
commonly used for this purpose. Since batteries can store only a
limited amount of energy, a charging regulator has to be installed
between the battery and energy sources to prevent fatal overcharg-
ing of the battery. This necessarily translates to suboptimal har-
vesting as not all of the wind/solar energy generated can be kept.
Moreover, charging regulators transfer the energy with a level of
efficiency lower than 100%.

The energy is drained from the battery by the communication
equipment. The overall power consumption is influenced by the
wireless NIC power consumption, which in turn is dependent on the
NIC state (e.g., transmit, receive, idle, sleep) and various other pa-
rameters (e.g., TxPower, bit-rate). This is especially true for multi-
radio mesh routers, which are common in rural wireless deploy-
ments including our Tegola network. Our experience with high-
power NICs specially designed for long distance links1 shows that
idle state power consumption is fairly high and that higher bit-rate
communication surprisingly can be more energy efficient. Energy
flow in a self-powered router over a ∆t time period can be de-
scribed by the following equation:

(1) EB,t+∆t = EB,t+k∗REGt+∆t∗(EWG,t+∆t+EPV,t+∆t)−
EC,t+∆t

where EB,t is the battery energy at time t, while EWG,t+∆t, EPV,t+∆t

and EC,t+∆t are the energy generated by the wind turbine, gener-
ated by the solar panel and consumed by the communication equip-
ment at time t+∆t, respectively. Regulation parameter REGt+∆t

dictates the amount of energy that is transferred to the battery at
that instant of time. Its value depends on the current battery volt-
age level, while k represents the charging efficiency. In the above
equation, ∆t is the update interval for battery energy level based
on weather sensor measurements and total power consumption.

Table 1: Additional energy flow model equations.

(a) EWG,t+∆t = PWG,t+∆t ∗∆t
(b) PWG,t+∆t = f(wst+∆t)
(c) EPV,t+∆t = PPV,t+∆t ∗∆t
(d) PPV,t+∆t = g(sit+∆t)

(e) REGt+∆t =





0, VB,t+∆t > VREG,2

1, VB,t+∆t < VREG,1
VREG,2 − VB,t+∆t

VREG,2 − VREG,1
, otherwise





(f) EC,t+∆t = PC,t+∆t ∗∆t

∆t – update interval
PWG,t+∆t – power generated by the wind turbine at time t + ∆t
f – wind turbine power curve
wst – wind speed [m/s] at time t
PPV,t+∆t – power generated by the solar panel at time t + ∆t
g – solar panel specification
sit – solar irradiation [W/m2] at time t
VREG,1, VREG,2 – charging regulator control voltages

Table 1 lists the additional equations used for the evaluation of
expression (1). Harvested energy EWG,t+∆t and EPV,t+∆t are

1Ubiquiti Networks XR5 Power Consumption Study,
www.ubnt.net



calculated via the wind turbine2 and solar panel data sheet3, re-
spectively. Charging regulator characteristics and the battery volt-
age at time t + ∆t determine REGt+∆t, a real number value be-
tween zero and one. In our setup, we use a pulse-width modulation
(PWM) charging regulator that is suitable for both wind turbines
and solar panels4. The actual behavior of such a regulator is hard
to describe analytically, so we use a linear approximation as given
by equation (e) in Table 1.

In the above equations we need to know the battery voltage in
order to evaluate the charging regulation function. The battery
voltage is directly connected to the state of charge (SOC) we are
estimating with the equations in Table 1. Unless no current flows
through the battery, the relationship is not a simple one as the inter-
nal resistance of the battery influences the voltage read at the bat-
tery ends. Under the same SOC, if the battery is being charged, the
voltage is higher than if the battery is being recharged; the higher
the charging/discharging current, the more observable the impact
of the internal resistance. Moreover, the internal resistance is not
constant: it changes with the outside temperature, battery age and
the SOC itself [3]. Well aware of the problem complexity we de-
cided to simplify the voltage - SOC relationship in our calculations
by using the following equation:

(2) VB,t = VB,80 +
VB,0−VB,80

log(EB,0−EB,80+1)
∗ log(EB,t −EB,80 + 1)

where VB,t is the battery voltage at time t; VB,0 is the battery volt-
age when fully charged; VB,80 is the battery voltage at 80% depth
of discharge (DoD); EB,t is the battery energy at time t; EB,0 is
the battery energy when fully charged; and EB,80 is the battery
energy at 80% DoD. We based equation (2) on the manufacturer’s
data sheet of a new Elecsol5 125Ah deep cycle carbon-fiber bat-
tery, the type used in the Tegola network. If a battery bank consists
of multiple identical batteries connected in parallel, then equation
(2) is still applicable except that VB,t and EB,t then correspond
to the overall/aggregate voltage and energy of the battery bank, re-
spectively. Note that currently we do not model the changes in the
internal resistance of the battery, but we plan to extend this repre-
sentation if needed.

The energy flow model captured by equations (1), (2) and Ta-
ble 1 can be used to estimate the current battery energy given the
total power consumption and current readings of solar irradiation
and wind speed. If future weather information (solar irradiation
and wind speed) can be forecast, then future node up/down times
can be predicted using the above model assuming power consump-
tion remains the same. The means of accurate weather forecasting,
however, is beyond the scope of this work.

3.1 Model Evaluation
We evaluate the accuracy of the model by comparing the esti-

mated battery voltage with the actual voltage recorded on-site at an
instrumented self-powered node in the Tegola network. We pro-
vide our model with the measured wind speed and solar irradiation
values. We assign an initial battery voltage (charge) and then it-
erate equation (1) every ∆t seconds; the granularity of the avail-
able weather measurements restricts ∆t to 60s. At time t, EWG,t

and EPV,t are calculated from the wind speed and solar irradiation
measurements and the hardware specification (wind turbine power

2Rutland 910-3 User Manual, www.marlec.co.uk
3KC130GHT-2 Data Sheet, www.kyocera.co.uk
4Note that there are other types of charging regulators, notably
maximum power point tracking (MPPT) regulator specifically de-
signed for use with solar panels.
5Elecsol, www.elecsolbatteries.com
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Figure 1: Accuracy of the energy flow model.

curve and solar panel characteristic). For simplicity, we use con-
stant power consumption. This is justified by Figure 1(a) — except
for occasional periods of instability, the consumption is largely con-
stant (around 14.5W).

In Figure 1(b), we show the estimated battery voltage at the in-
strumented self-powered node in our testbed using equation (2) and
the measured sensor readings (for solar irradiation and wind speed)
over a two week period. Actual, measured voltage over that period
is also shown for comparison. We see that the estimated voltage
based on the model closely tracks the measured voltage. Discrep-
ancies between the two can be explained by the fact that the mea-
sured voltage exhibits sharp rises as the battery is being charged
due to the impact of internal resistance even though the actual bat-
tery charge does not change so drastically. We do not model the
effects of the internal resistance in equation (2).

To quantify the model’s performance we need to define what it
means for the model to be accurate. As the battery voltage is a real
number and small variations from the actual measured values do
not play a big role in the end calculations, we define the accuracy
as a relative error bracket around the measured value in which the
predicted value should fall. For example, if we agree on a 20%
error value we are considering the estimated value to be correct
if the relative error is less than 20% (compared to the measured



Figure 2: Impact of routing decisions on node availability and
network connectivity.

value). Given a sample, we can calculate how many of the values
in the sample accurately predict the voltage according to the above
definition. Figure 1(c) plots the percentage of values in the sample
(of size around 30,000 and corresponding to Figure 1(b)) that are
accurate as the definition of accuracy gets looser. For a reasonable
tolerance (11.5%), our model is accurate 90% of the time for the
sample under consideration. Overall, the model underestimates the
actual voltage and the mean modeling error falls in the interval
(-0.5998, -0.5906)V with 99% confidence.

Using the above energy flow model for a self-powered router al-
lows higher layer protocols to be energy-aware. In the next section,
we demonstrate the benefit of the model through a novel energy-
aware routing protocol.

4. ENERGY-AWARE PATH SELECTION
In a rural wireless network with self-powered routers, node en-

ergy budgets are time-varying depending on the energy production
and consumer patterns. Nevertheless, energy budget distribution
within a network of self-powered devices is tightly connected to the
routing decisions since the wireless interface activity impacts node
energy budgets. As a result, energy-oblivious routing can lead to
long periods of path unavailability and/or network partitions, which
in turn causes message losses (for lack of a route and buffer space)
and large message delays (as a result of having to wait in buffer
until the network partition heals).

Consider the example scenario in Figure 2 to illustrate the poor
routing decisions resulting from energy-oblivious routing. Suppose
nodes B and C are each powered by a solar panel and also suppose
that at 7pm each of them holds the same amount of battery charge
Q. Node A sends a lengthy packet stream to node D. If the packets
are sent via one of the nodes (without loss of generality we choose
B), that node’s consumption rate is equal to pt while the other node
enjoys idle energy consumption rate pi. The rate pt is too high to
keep node B up and running until 7am when the sun rises. Instead,
B is fully depleted at 4am. If, however, the consumption rate is
balanced so that half of the time node B relays A’s traffic and half
of the time node C relays it (pe = pi+pt

2
), then both nodes would

be up long enough to see the sun and would remain available. Ob-
viously, a wrong routing decision can lower the connectivity of the
network. Suppose that node B has data to send around 6am. In that
case, the request could not be served until at least an hour later. In
this case, a wrong routing decision impacts packet delivery and de-
lay as well. While the routing decision is fairly straightforward in
this example, it is not with general topologies and traffic patterns,
especially when multiple different types of renewable sources are
used (e.g., solar and wind).

4.1 Lifetime Pattern based Routing (LPR)
In our solution, we implicitly control depletion of node energy

reserves through routing decisions, and improve the distribution of
available energy reserves amongst network nodes. The goal is to
avoid (even temporary) network partitioning and node failures so
that reliable paths are available in the network most of the time to

successfully route messages without delays. Given the relationship
of this scenario to the DTN setting, if a path is unavailable to route
a message then we would like to be able to choose a route that
becomes available the soonest.

Our protocol, Lifetime Pattern based Routing (LPR), is based on
a routing metric that utilizes the energy flow model along with node
lifetime predictions described in Section 3. LPR is constructed
as a link-state routing protocol. There are multiple reasons why
this type of a protocol is the most suitable for long-distance rural
area wireless networks; a thorough discussion can be found in [2].
Nodes determine their future up and down times using the energy
model, average node power consumption and future weather infor-
mation. We do not define how far in the future the nodes should be
able to predict the weather (we use 24 hour predictions in our eval-
uation), nor provide the means of getting the accurate prediction.
Periodically, each node propagates information about expected fu-
ture up/down times to its neighbors. This information, combined
with the knowledge of its expected future up/down times, allows
each node to determine the failure patterns of each of its incident
links6. If both nodes on either end of a link are up, the weight of the
link is proportional to the time left until the first end node failure
occurs. If, on the other hand, the link is down, meaning at least one
of its end nodes is down, the link weight is inversely proportional
to the time left until both end nodes are predicted to be up.

Periodically, each node initiates a network-wide dissemination
of its link weights in an epidemic manner as in [7]. Using link
weights from all nodes in the network, every node computes routes
to every other node by applying Dijkstra’s algorithm and using the
following path selection criterion: among the possible set of routes
to a destination, select the one for which the minimum link weight
on the path is the largest.

The proposed weighting function has two consequences: 1) the
routing algorithm avoids selecting paths that are likely to fail in
the near future, balancing the energy reserves equally among the
network nodes; 2) the routing algorithm reduces the delay by se-
lecting the routes that are about to be available soon. In a delay
tolerant setting a path may consist of some links that are currently
up and others that are currently down. In order to compare weights
of links with different statuses, we bring links that are up and those
that are down to the same scale. Empirically, we arrive at the con-
clusion that those links that are up and are predicted to go down in
one hour should be of the same weight as those links that are down
but expected to be up in one hour. The selected point gives a good
balance that shows both properties, 1) and 2), of the algorithm.
Changing the balance point results in an algorithm that favors one
of the above mentioned properties.

5. EVALUATION
In this section, our goal is to evaluate the routing effectiveness of

LPR in rural wireless network scenarios with self-powered routers.
We consider three performance metrics for this evaluation: (i) per-
centage of messages delivered; (ii) end-to-end message delay (av-
erage and cdf); and (iii) power metric as defined in [11] as a ratio
between the throughput and the average delay — higher the better;
this metric captures the combined effect of improving delivery ratio
and delay.

We compare LPR performance with DTLSR [2], the work that is
most similar to ours. The authors specifically target rural-area net-
works, propose and justify a link-state protocol and select MEED [7]

6In this scenario, node locations are usually fixed but nodes (and
consequently their incident links) fail temporarily for some periods
due to lack of sufficient power.
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Figure 3: LPR gain with varying traffic load.

as the most appropriate metric. Although targeting the deployments
where the most probable cause of link/node failure is the lack of
sufficient power, the authors do not take into account energy avail-
ability behavior. Therefore, we not only compare our work to the
state of the art, but also quantify the benefits from power-aware
routing in rural wireless networks with self-powered routers, some-
thing not previously done.

We briefly elaborate on the MEED metric used in DTLSR [2].
The Minimum Estimated Expected Delay (MEED) metric is a prac-
tical version of Minimum Expected Delay (MED), a metric that
calculates the expected delay based on the future contact patterns.
Instead of the known future contact schedule, MEED uses the ob-
served contact history to estimate the expected delay. This assumes
that the future connectivity will be similar to the previously ob-
served connectivity. This makes MEED an attractive option for
networks with scheduled power outages and networks that rely on
a periodic bus service [4]. We expect MEED to perform reason-
ably well in a self-powered network scenario as the periodicity is
present in at least one environmental factor that determines nodes’
up/down patterns — solar irradiation.

5.1 Simulation Setup
We use trace-based simulation as the evaluation methodology.

Specifically, we use DTNSim2 [16], which is a Java-based simu-
lator developed for delay-tolerant network (DTN) evaluations. We
extended the DTNSim2 with an energy layer which in essence is
equation (1). A unique energy layer is instantiated for each node;
the energy layer keeps track of a node’s available battery capac-
ity and updates this value according to the weather information and
communication equipment activity. We set the baseline node power
consumption to 16W . The Tegola network nodes composing of
a wireless routing board, local wireless AP, data logger and four
NICs consume about the same amount of power. We add a further
2.5W (0.5W ) for each transmitting (receiving) interface.

For our evaluation, we generate twenty different 25-node net-
work topologies that resemble a typical rural area deployment [1]

Table 2: Average packet delay, loss, and power. Note: standard
deviation is shown in parentheses.

64KB based traffic load
Delay [h] Delivery ratio [%] Power [b/s2]

MEED 18.18 (18.61) 86.01 (8.92) 0.016 (0.005)
LPR 14.91 (15.31) 88.14 (9.19) 0.021 (0.006)

640KB based traffic load
Delay [h] Delivery ratio [%] Power [b/s2]

MEED 9.13 (9.39) 51.2 (10.1) 0.198 (0.068)
LPR 7.76 (8.01) 55.9 (9.7) 0.255 (0.077)

[6] [15]: node connection degree is low, one node is elected as
a gateway and all communication is between nodes and a gate-
way. Each of these topologies constitutes an independent simu-
lation run. Before each run, we randomly assign different initial
battery charges to the nodes. We use a large trace of weather sen-
sor (wind speed and solar irradiation) data obtained from the instru-
mented self-powered node in the Tegola network. We slice the trace
into four single-day subtraces and assign a subtrace to each of the
nodes in the simulated network. The node up and down times are
dictated by the specific subtrace assigned to it. Each of these sub-
traces are long enough for several uptime/downtime transitions to
occur during the course of the simulation. At this point we are not
considering means of predicting solar irradiation and wind speed;
instead, we provide an oracle that gives the exact local weather
forecast for the next twenty four hours to each of the nodes.

To exclude the influence of network congestion, all the links have
their bandwidth set to 54Mbps (the maximum for IEEE 802.11a/b/g
networks) and a propagation delay of 1ms (an expected value for
20km long links). All nodes have identical hardware properties
and the same storage buffer sizes of 5MB.

5.2 Results
In this section, we first present two sets of results correspond-

ing to low and medium traffic intensity, respectively. In the first
set, the gateway sends each node 64KB of data in 1KB chunks
(one chunk per second) every hour. This traffic profile is similar
to the one used in [2], except that data is split into smaller packets
to make it realistic for transmission on 802.11 links and empha-
size the influence of changing power consumption. We can expect
this low traffic intensity if, for example, the network is used for
environmental monitoring. Results are shown in Figures 3(a) and
Figure 3(b). It is clear from Table 2 (upper part) that there is only
a small improvement with LPR in the percentage of messages de-
livered compared to MEED but a significant improvement in terms
of delay (more than 3 hours). Together this results in an improve-
ment of about 25% in terms of the power metric. Note that with
buffering of messages that cannot be routed immediately, the per-
formance differences between protocols would largely manifest in
terms of delay differences, which is what we observe from the re-
sults. Figure 3(a) shows the cdf of the delay gain with LPR over
MEED obtained across all twenty runs. This plot shows that LPR
improves the delay by over an hour in more than 70% of the cases
compared to MEED. This is mainly because of the fact that MEED
naïvely determines the future up/down times based on past patterns
without explicitly modeling the energy flow behavior. Moreover
diversity of renewable energy sources make it difficult for MEED
to make good routing decisions. Figure 3(b) shows the cdf of the
gain with LPR over MEED in terms of the power metric. This met-
ric also shows improvement, however, due to small amount of data
being sent the difference is not so pronounced.

We now consider the impact of higher traffic intensity on the ef-
fectiveness of LPR. 640KB of data is now transferred every hour



between the gateway and each of the nodes in the network. This
amount of traffic can be observed in a delay tolerant network used
for email communication. Figures 3(a) and 3(b) and Table 2 (lower
part) show the performance impact. We see a different impact
where there is a noticeable improvement in delivery ratio and slightly
reduced gain in delay with LPR compared to MEED. This can be
explained by the fact that greater traffic intensity leads to greater
buffer overflows for a given buffer size, so the packets that would
otherwise be delayed for long periods waiting in the buffers are be
dropped. This explains the different observed effect on delivery
ratio and delay relative to the previous case. The net impact on
the power metric is greater compared to the previous low traffic in-
tensity case, as there is much more data impacted by the improve-
ments provided by LPR. Like before, we show plots of the delay
and power gains with LPR over MEED across all simulation runs
as cdfs. Significant benefit from LPR’s power-aware routing strat-
egy using the energy-flow model is evident in both these measures
more so with the power gain due to the larger differentials in packet
delivery ratio with the two protocols.

6. RELATED WORK
To the best of our knowledge, energy flow modeling for self-

powered wireless networks has not been considered before. Re-
newable energy harvesting is covered by a large body of research
in wireless sensor networks (WSNs) [12], [5], [13]. The exist-
ing WSN energy harvesting techniques and hardware solutions, if
used directly, are inappropriate for WiFi networks. Consumption
patterns are substantially different: unlike rural area self-powered
routers, sensor nodes spend most of their time sleeping, when only
a small fraction of energy is used, and wake up to receive and send
periodically. In addition, sensor networks rarely use more than one
environmental energy source - sunlight, as the dimensions of most
sensors make wind turbine placing impossible. In our work we con-
currently examine both wind and solar generated power as well as
the complex interaction between the two. In [8], Kansal et al. pro-
pose an energy harvesting oriented method to determine the duty
cycling periods of a sensor mote. Their goal is to preserve energy
neutrality, i.e. prevent node depletion, and maximize node active
time. The authors do not model the energy flow but assume that
the energy consumption and generation can be measured. Direct
applicability of the above work on our problem is limited since
community WiFi networks cannot employ aggressive duty cycling.
Wake-on-WLAN [10] uses 802.15.4 sensor motes to register an in-
coming 802.11 transmission and turn on a self-powered router. In
a network with long periods of inactivity this provides substantial
energy savings. This approach can be augmented with our energy
flow modeling work. With the model in place, before taking any
action, network nodes could evaluate the benefits (energy savings)
and the drawbacks (unavailability, equipment powering-on delay)
of turning off their routers

A number of power-aware routing metrics are examined in [14].
The simulation setup in that work assumes that the nodes are pow-
ered by non-rechargeable batteries. Time to failure is then approx-
imated by examining the current battery voltage. Calculating the
proposed metrics in a self-powered network, where the batteries
are recharged in non-regular intervals, is challenging; we believe
that the energy flow model could provide the necessary insight.

7. DISCUSSION AND FUTURE WORK
The goal of our work is to define an energy flow model for

self-powered wireless mesh network deployments. Such networks
are becoming increasingly important as the communication spreads

to rural areas of the developing world where erratic and sporadic
power supply represents a major hurdle for higher ICT penetra-
tion. Novel challenges arise in self-powered WiFi networks: en-
ergy harvested from renewable sources is available at varying de-
grees through time, making energy supply difficult to estimate; and
the impact of energy-aware network protocols on network perfor-
mance has not been studied previously.

In this paper we have developed an energy flow model for self-
powered wireless network routers. Using the functionality pro-
vided by the model and future weather forecast information, we
build an energy aware routing protocol called LPR. We evaluated
the protocol through simulation based on the measured weather
sensor traces obtained from an actual rural wireless network with
self powered routers. We have demonstrated that in realistic sce-
narios, LPR significantly improves delay and provides similar or
better packet delivery performance compared to the state of the
art approach. In addition, LPR facilitates deployment of hetero-
geneous networks as it balances routing tasks among nodes while
taking into account their individual hardware properties.

LPR protocol is just one example of how reliable energy-flow
estimation can be used to improve fundamental network mecha-
nisms. In the future, we see the model’s role in novel online energy
consumption management and network planning solutions.
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